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Interactions between runaway electrons and whistlers 
may lead to pitch angle scattering of runaways 

2017 Frontier science experiments on DIII-D –
to make connection between space and 
fusion plasmas.

– subsequent experiments were performed 
in 2018/2019/2022.

– Possibility to intentionally launch whistlers 
to dissipate RE beams in fusion devices 

• Model whistler-REs interactions and study 
the underlying physical phenomena

D. Spong et al., “First Direct Observation of 
Runaway-Electron-Driven Whistler Waves in 
Tokamak”, PRL, (2018)
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Outline

• Resonant interactions between Whistlers and REs

• Previous modelling efforts

• AORSA+KORC model

• Simulation results 
– Evolution of RE distributions 
– Identifying resonant REs

• Summary
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• Various pathways for interaction 
between REs and Whistler waves exist. 

• In previous studies, resonance 
condition is given by[W. Heidbrink, 
2019] :

Possible resonant pathway is anomalous Doppler 
resonance and Cherenkov resonance

~100
MHz

Few
GHz

Few
GHz

10
MHz

W. Heidbrink et al., PPCF, 61,014007 (2019)

---(1)

𝑙𝑙 = −1 for anomalous Doppler res
𝑙𝑙 = 1 for normal Doppler res
𝑙𝑙 = 0 for Cherenkov res
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• T. Fülöp et al, (2006) studied REs driven magnetosonic whistler  instabilities
– quasi-linear analysis showed pitch angle scattering of REs due to whistlers

• Aleynikov and Breizman [2015] performed stability analysis of RE driven Whistler 
instabilities using a ray tracing code- COIN. 

• C. Liu et al. [2018] studied the effects of kinetic whistler wave instabilities on the 
runaway electron avalanche
– quasilinear diffusion model with GHz range whistler frequencies
– Studied the role of kinetic instabilities leading to anisotropic RE distribution 

producing non-thermal ECE 

• Z. Guo et al., [2018] used quasi-linear diffusion analysis to study role of externally 
injected whistlers on REs 

Modelling efforts have been based on quasi-linear 
diffusion analysis 
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Ref. [1] D. A. Spong et al, PRL (2019); [2] W. Heidbrink et al., PPCF, 61,014007 (2019).
[3] M. T. Beidler et al., Phys. Plasmas, 27,112507 (2020). 
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We model interactions between tokamak whistler waves 
and REs by coupling AORSA fields with KORC 
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Identifying underlying physical phenomena for pitch angle 
scattering of REs due to whistlers is not straightforward

• Resonance condition not simple anymore: several poloidal modes coupled 
• AORSA+KORC model simulates the complex resonant interactions between Whistler 

waves and runaway electrons
• We used statistical analysis as a tool to identify the nature of these interactions 

#REs=10240

AORSA KORC
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Whistler wave eigenmodes from AORSA with 200MHz 
frequency along with EFIT equilibrium from DIII-D 
experiments are used to evolve RE trajectories in KORC

Challenge-Whistler wave amplitudes not measured in experiments

Whistler 
wave 
amplitude
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Variation in phase-space (E-𝜼𝜼) distribution of REs is 
substantial with scaled whistler fields 

𝛿𝛿𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚/𝐵𝐵 ≈ 10−5
𝛿𝛿𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚/𝑐𝑐𝐵𝐵 ≈ 10−6

𝛿𝛿𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚/𝐵𝐵 ≈ 10−4
𝛿𝛿𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚/𝑐𝑐𝐵𝐵 ≈ 10−5

𝛿𝛿𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚/𝐵𝐵 ≈ 10−3
𝛿𝛿𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚/𝑐𝑐𝐵𝐵 ≈ 10−4

After 0.8 ms

Pitch angle 
scattering of REs 
to large angles 
and gain in KE 
becomes evident
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To study nature of RE transport, moments of total pitch 
angle displacements after 2ms and their scaling with 
time is calculated

E_initial 5-10MeV

E_initial=10-15MeV E_initial=15-20MeV

𝜎𝜎2 ≈ 𝑡𝑡0.903 𝜎𝜎2 ≈ 𝑡𝑡0.86

𝜎𝜎2 ≈ 𝑡𝑡0.82 𝜎𝜎2 ≈ 𝑡𝑡0.6

E_initial 1-5MeV

𝜎𝜎𝜂𝜂2 =< [𝛿𝛿𝛿𝛿𝑖𝑖−< 𝛿𝛿𝛿𝛿𝑖𝑖 >]^2 >
Here, 𝛿𝛿𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖 − 𝛿𝛿0

We identified the scaling 
of 𝜎𝜎𝜂𝜂2 ~ 𝑡𝑡𝛼𝛼
• If 𝛼𝛼 > 1 : Super-diffusion 
• If 𝛼𝛼 = 1 : Diffusion
• If 𝛼𝛼 < 1 : Sub-diffusion 

Ref: D. del-Castillo-Negrete et al., POP, 11, 3854 (2004)
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E_initial=1-2MeV E_initial=2-3MeV

E_initial=3-4MeV E_initial=4-5MeV

𝜎𝜎2 ≈ 𝑡𝑡1.24 𝜎𝜎2 ≈ 𝑡𝑡1.197

𝜎𝜎2 ≈ 𝑡𝑡0.945 𝜎𝜎2 ≈ 𝑡𝑡0.897

To study nature of RE transport, moments of total pitch 
angle displacements after 2ms and their scaling with 
time is calculated

𝜎𝜎𝜂𝜂2 =< [𝛿𝛿𝛿𝛿𝑖𝑖−< 𝛿𝛿𝛿𝛿𝑖𝑖 >]^2 >
Here, 𝛿𝛿𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖 − 𝛿𝛿0

We identified the scaling 
of 𝜎𝜎𝜂𝜂2 ~ 𝑡𝑡𝛼𝛼
• If 𝛼𝛼 > 1 : Super-diffusion 
• If 𝛼𝛼 = 1 : Diffusion
• If 𝛼𝛼 < 1 : Sub-diffusion 
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Net Pitch angle diffusion is a function of initial energies 

𝜎𝜎𝜂𝜂2 =< [𝛿𝛿𝛿𝛿𝑖𝑖−< 𝛿𝛿𝛿𝛿𝑖𝑖 >]^2 >
Here, 𝛿𝛿𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖 − 𝛿𝛿0

We identified the scaling 
of 𝜎𝜎𝜂𝜂2 ~ 𝑡𝑡𝛼𝛼
• If 𝛼𝛼 > 1 : Super-diffusion 
• If 𝛼𝛼 = 1 : Diffusion
• If 𝛼𝛼 < 1 : Sub-diffusion 

Super 
Diffusive

Diffusive

Sub-
Diffusive
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We calculated the diffusivity of net pitch angle 
displacements for narrow ranges of energies from the slope 
of variance-time curve

E_initial=1-2MeV E_initial=3-4MeV

E_initial=7-8MeV
E_initial=9-10MeV

Assuming the pitch angle 
scattering to be a diffusive 
phenomena (𝛼𝛼 = 1),  we aim 
to identify the parameter ”D” 
known as diffusivity given by 
the equation: 

𝜎𝜎𝜂𝜂2 = 𝐷𝐷 ∗ 𝑡𝑡 ;

For different ranges of REs 
energy.
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Diffusivity coefficient is also a function of initial energies 
of REs  

Assuming the pitch angle 
scattering to be a diffusive 
phenomena (𝛼𝛼 = 1),  we aim 
to identify the parameter ”D” 
known as diffusivity given by 
the equation: 

𝜎𝜎𝜂𝜂2 = 𝐷𝐷 ∗ 𝑡𝑡 ;

For different ranges of REs 
energy.
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Evolution of ensemble averaged RE energy with time 
indicates a dependence of energy gain on initial energy 
of REs

E_initial=1-5MeV E_initial=5-10MeV

E_initial=10-15 MeV E_initial=15-20 MeV

𝐸𝐸𝑚𝑚𝑎𝑎𝑎𝑎 =
∑𝐸𝐸𝑖𝑖

𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖~10240 #𝑝𝑝𝑝𝑝𝑤𝑤𝑡𝑡𝑖𝑖𝑐𝑐𝑙𝑙𝑤𝑤𝑝𝑝 𝑝𝑝𝑡𝑡 𝑤𝑤𝑒𝑒𝑤𝑤𝑤𝑤𝑒𝑒 𝑡𝑡𝑖𝑖𝑡𝑡𝑤𝑤
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Does pitch angle scattering and energy gained by REs 
also depend instantaneous energy of REs? 

• We will now perform statistical 
analysis of the kicks to REs pitch 
angle and kinetic energy at for 
instantaneous energy of REs

• Variance in pitch angle kicks: 

𝜎𝜎𝜂𝜂2 =< [Δ𝛿𝛿𝑖𝑖 −< Δ𝛿𝛿𝑖𝑖 >]^2 >

Here, Δ𝛿𝛿𝑖𝑖 = 𝛿𝛿𝑖𝑖 − 𝛿𝛿𝑖𝑖−1

• Variance in kinetic energy kicks: 

𝜎𝜎𝐾𝐾𝐾𝐾2 =< [Δ𝐾𝐾𝐸𝐸𝑖𝑖−< Δ𝐾𝐾𝐸𝐸𝑖𝑖 >]^2 >

Here, Δ𝐾𝐾𝐸𝐸𝑖𝑖 = 𝐾𝐾𝐸𝐸𝑖𝑖 − 𝐾𝐾𝐸𝐸𝑖𝑖−1
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Variation of instantaneous pitch angle displacement
indicate resonant interactions between Whistlers and REs 
at 2MeV and 6 MeV energies

Peak in the variance of pitch 
angle kicks w.r.t
instantaneous energy

Peak in the variance of 
kinetic energy gain w.r.t
instantaneous energy
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Summary 

• KORC+AORSA model provides a unique capability to predict  and model these 
interactions for a range of frequencies of interest (100s of MHz in the DIII-D 
experiments).

• Via statistical analysis, RE displacements are observed to be a function of 
instantaneous energies of REs.

• Peaks in variance of instantaneous pitch angle displacements with energies 
indicate possible resonances between REs and whistlers between 1-2 MeV and 5-6 
MeV energies for whistler frequency of 200MHz. 

Future work: Calculate the resonant energies for different whistler frequencies

• Further analysis to explore effectiveness of synchrotron radiation as a possible 
mechanism to dissipate RE energy during disruptions in tokamaks. 
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